Mit dem Programm Speedion 2010 lässt sich eine lineare Paul-Falle simulieren und die Bewegungsbahn des Ions in der Paul-Falle verfolgen.
Mehr Informationen zu dem Programm finden Sie <u>hier</u> .
Eine Paul-Falle ermöglicht es, geladene Teilchen (z.B. Ionen) mit Hilfe von elektrischen Wechselfeldern auf begrenztem Raum zu speichern.
Wolfgang Paul erhielt für die Entwicklung der Paul-Falle 1989 den Nobelpreis in Physik.
Ein Spezialfall der Paul-Falle ist die lineare Paul-Falle. Diese besteht, analog zu dem folgendem Schema, aus 4 parallelen Stäben. Jeder der 4 Stäbe ist in 3 Segmente 18 (Elektroden) aufgeteilt: ein Mittelstück und zwei Endstücke.
{gallery}speedion2010/paulfalle/1{/gallery} Bildquelle:
http://www.exphy.uni-duesseldorf.de/ResearchInst/ultracold_complex_molecules.htm

Da die Endstücke gleichnamig zum Ion gepolt sind, also z.B. positiv gepolt sind bei einem positiven Ion, kann das gefangene Ion die Paul-Falle in Längsrichtung nicht verlassen.
An die 4 Mittelstücke wird eine Wechselspannung angelegt, wobei jeweils die 2 diagonal gegenüberliegenden Elektroden gleich gepolt sind (Elektrodenpaar).
Das Prinzip der linearen Paul-Falle ist somit: Das gefangene Ion wird von einem Elektrodenpaar angezogen und gleichzeitig von dem Anderen abgestoßen. Nach dem Umpolen der Spannung, kehren sich die Verhältnisse um.
Die Frequenz der Wechselspannung wird dabei so gewählt, dass sich die Elektrodenpaare rechtzeitig umpolen, sodass es für das Ion kein Entkommen gibt.
Die lineare Paul-Falle kann mit dem Programm anschaulich simuliert werden:
Dazu platziert man 4 Ladungen, welche einen senkrechten Querschnitt durch die Stäbe der linearen Paul-Falle repräsentieren, auf dem Feld wie folgt:
{gallery}speedion2010/paulfalle/2{/gallery} Durch die Endelektroden der linearen Paul-Falle is die Bewegung des Ions, im Wesentlichen auf diese dargestellte Simulationsebene reduziert.

Als nächstes platziert man ein Ion nahe der Mitte der Anordnung. Die Anfangsgeschwindigkeit sollte nahe Null gewählt werden (Paul Fallen werden stark gekühlt betrieben!).
Wird jetzt die Wechselspannung angelegt, kann man die Flugbahn und Geschwindigkeit des Ions am Bildschirm verfolgen. Im Idealfall kann das Ion die Paul-Falle nicht mehr verlassen.
{gallery}speedion2010/paulfalle/3{/gallery}